If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-16x-720=0
a = 4; b = -16; c = -720;
Δ = b2-4ac
Δ = -162-4·4·(-720)
Δ = 11776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11776}=\sqrt{256*46}=\sqrt{256}*\sqrt{46}=16\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{46}}{2*4}=\frac{16-16\sqrt{46}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{46}}{2*4}=\frac{16+16\sqrt{46}}{8} $
| x+123=-24 | | y-89=345 | | 37+4x=2 | | 2x2+3x=20. | | 5x+99=7x+97 | | 2x-56=x+30 | | 2x-77=x+9 | | 9x=15-6x | | H=6+24t-16t^2 | | -5(-3x-3)+2x+5=-36 | | 2x+8+2x=23 | | 17×+25=14x-8 | | 5x8-2x=26 | | Y-4+4+3y=4+4 | | 25+10(2+x)=25 | | L3(z+7)=4(z+6)+9 | | 5x+6(-x-3)=-25 | | 24x+1=14x+4 | | -2x+24=-5x-12 | | 22x=352 | | 12x+24=-86 | | 3x(-45)=80 | | 3x-45=80 | | 66y=72 | | 2f+F1=152 | | 2.56=w/8 | | 2a5=3 | | 8a2=12+a | | (2/3)p+6=(7/6)p | | 2y*6+-1*6=-5*3y+-15*5 | | (4a+16)-(a-4)=-25 | | 6,6/7=n+53/7 |